Stage 6	Stage 7		Stage 8/Foundation	Stage	9/FH	Stage 10/Higher	Stage 11/Higher+
draw 2-D shapes using given dimensions and angles	identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres		identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference know the formulae: circumference of a	know the formulae for: Pythagoras' theorem, $a^{2}+b^{2}=c^{2}$, and apply it to find lengths in right-angled triangles in two dimensional figures		know the formulae for: Pythagoras' theorem, a^{2} $+b^{2}=c^{2}$, and apply it to find lengths in rightangled triangles and, where possible, general triangles and in three dimensional figures	
illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius	identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres		know the formulae: area of a circle $=$ πr^{2}	identify and apply circl properties, including: and segment	le definitions and tangent, arc, sector	apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results	Properties of shape
recognise, describe and build simple 3-D shapes, including making nets			interpret plans and elevations of 3D shapes	construct plans and elevations of 3D shapes		identify, describe and construct similar shapes, including on coordinate axes, by considering enlargement (including fractional scale factors)	identify, describe and construct similar shapes, including on coordinate axes, by considering enlargement (including negative scale factors)
			identify, describe and construct similar shapes, including on coordinate axes, by considering enlargement	use these to construct given figures and solve loci prob- lems; know that the perpen- dicular distance from a point to a line is the shortest dis- tance to the line	use the basic congruence criteria for triangles (SSS SAS, ASA, RHS)		
compare and classify geometric shapes based on their properties and sizes	derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language		derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)	apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras' Theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs			
							Proof
find unknown angles in any triangles, quadrilaterals, and regular polygons	apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles		understand and use alternate and corresponding angles on parallel			know the trigonometric ratios, $\sin \theta=$ opposite/ hypotenuse, $\cos \theta=$ adjacent/hypotenuse, $\tan \theta=$ opposite/adjacent	apply them to find angles and lengths in right-angled triangles and, where possible, general triangles in three dimensional figures
						apply it to find angles and lengths in right-angled triangles in two dimensional figures	know and apply the sine rule, $a / \sin A=b / / \sin B=c /$ sinc, and the cosine rule, $a^{2}=b^{2}+c^{2}-2 b$ cose to find unknown lengths and angles
recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles						know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}$ $45^{\circ}, 60^{\circ}$ and 90°; know the exact value of $\tan \theta$ for $\theta=$ $0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°	know and apply Area = $1 / 2 \mathrm{ab}$ sinC to calculate the area, sides or angles of any triangle.
							ngles

