Product Design

Summer Taster Pack

The transition from Year 11 to Sixth Form

In A Level Product Design, you will start the year carrying out a range of mini-projects, building your creativity and practical abilities. You will also be attending 'theory' lessons where you will progress your knowledge and understanding of the subject from a GCSE to an A Level standard. NEA will begin in November and this will be your major design and make project and portfolio, which equates to 50% of your final grade. The exam being the other 50%. Throughout the A Level you will be:

- Expected to offer creative solutions to problems.
- Learn how to communicate ideas confidently using a range of design strategies such as 2D and 3D drawing, Isometric sketching, Orthographic technical drawing, CAD such as SketchUp (which is free to use on the web), cross-sections and close-ups, annotation to explain your work, and using clients to help decision make.
- Using inspiration from external sources such as designers and design houses to progress your design work.
- Carrying out 'Iterative Design', which includes testing, experimenting, updating, evaluating and gaining feedback from stakeholders throughout to gain successful final outcomes.
- Integrate Maths into your designing, planning and manufacturing.
- Carrying out a range of mini-projects to further progress your all-round design skills and learn new manufacturing techniques.
- Expected to have an outside interest in the subject of design, and partake in wider reading.
- Completing an NEA worth 50% of your final grade.
- Completing an examination worth 50% of your final grade.

To begin this course, you will need to bring an A4 ring binder to collate and organise all your project and theory work.

Useful websites: Edexcel A Level Design and Technology:
https://qualifications.pearson.com/en/qualifications/edexcel-a-levels/design-technology-product-design-2017.html

Useful Textbooks: Maths in A Level Design and Technology:

Introduction to the Product Design summer tasks 2021:

The design industry operates on this constant desire to want to develop and improve the items we use on a day to day basis, whether this be redesigning the homes we live in, the furniture we relax on, or the technology that consumes our daily lives.

Task 1 - All About You

What is it that makes you want to pursue a design course, why are you interested in developing your design skills? This will help us understand you, your aspirations and how best to support you.

In the box below, write a short paragraph, no more than 300 words (no less than 200) explaining why you are opting to study Product Design at A Level.

Include what you believe to be your strengths and your areas you would like to work on over the course of the sixth form.

Task 2 - Inspirational Designers!

Research an Architect, designer or design firm that excites you!

What is it about their work that makes you feel inspired? In no more than 400 words introduce them, and clearly outline their key design principles. Include images you can discuss. What makes their style unique? Select one example of their work and analyse it from both a form and function perspective.

Task 3 - CAD - SketchUp

$C A D=$ Computer aided design, love it or hate it, it's the way we design products in modern society. You may love using CAD and be very confident in this field, fantastic! Or, you may need a little bit more encouragement and practice. Design a chair in the style of the architect you researched in task 2. There are loads of YouTube help clips for anything you may struggle with. I have attached a tips sheet below.

KEYBOARD SHORTCUTS

 Just press the key once to go to the tool you need!

Select Tool
Brine5 you to your arrnw tool.

SPACE BAR

Line Tool
Lets y,o11 draw :.n-aight tiner. to create- si'tape5.
Rectangle Tool
lets 'fol.i dr.iw sguo111"es.and Ject-.iingese e ily. (lrdeJo-cl

Lets ou draw drcles i:!as1ly. Just i:ll kandd $\mathrm{g} \quad$ • ar type the radius jhalf the wi tn of i:he <lrde-).

ArcTool
Lets you draw curved lines to jo,i112 po.ints:
Move foci
Le-ts you ove the sl'lape:Sy-Out draw.

OrbitTocl
leb yot1 cflangie the 'o'iew of VOilr model.

rPw:hlP 11001
Lets yi;t>u p11JI.yolJr rnodelim:oa ID i;k1;i
from a $20, \mathrm{~s}$ s.ha"
Offset Tool
Let5you cre;ite .i bigge:r or 5 mo1ller VI;!!:... 1 ori ooJ your sl'tarie inside or out d12the first !Joalle.

Rotate Tbol
Let5vou rot.irte ,;mol ti.Jr.n y-ol,ir sh;ilpe-s .irntmd their centre.

Erase Tool

Letli ' 'CIIJ era e.sl-lapes a.nd ltneS \ddagger
Tap@ Measure 'lool
Letsott m12-as-ure the Itm'gth of a line or :i.ha

Scale Tool
Lets v-ou make your abject bigg,er or smalter 1.1:liin.gthe _greens.qu-:arn.s.

Poail'//Move Sere.en Tool
1ft5 you move the view on your wee-n wit! hQUt ctl,ms;ing the;;i gle,

Zoom Tool

Let'sullii:zoom in an.d'autofyour modet

Make Component Tool
Lets you m8kea oomporier1t from your obJect

Don't forget to save your work!

COPY \& PASTE
You can copy and paste in you model in three ways

- select all ace and erjge-s of li(I-Ur objec, ngh di(;k 011the .shap and se-lec:L lh.e Irori drclecl mblur;,,
Then right click aga ri and
s-ele\{;,the i(:an circled i red,

2

at tlle same time

十

Pan@ Once you have copied your Dbj@ct jus\{I)rnss
 Ctrl and V on your keyoo.ard

TI-le las.t and sometimes quic:keit way to oop,y a11 object l:s to d:o the fallowin

- Se ect your objjtc:c:t th!1! pres M on your keyl:ma d
- Then hold down Ctrl on your leyooard
- Moye your moui; ;e aw rtJm the r:st obje,;;t "_LM-A . Th n dick!
Now you he-2 abje:c.ts.!

thet'L $+\diamond$:

MOVINC ACCURATEM

Locking to an Axis \& Point Snapping

To lack Vour li te d1re..t1on (l ke.,,), yol.Ir ot-aMn (Rkey) a your ob]ecat movem nt (\mathbf{M} key) to.an axis., s.elect vo1.1r o-bjttl star MOliJf'lg It lri Chi:! diri.!C:I o ya want-and thet1:

for accurat(!o moli'f!m11mt try to U!ie a corn r ar millp,olnL ., otComportent: Hover your mouS $€$ ove a oomer until .i wloured dot or s(lliilre app,ears. Clict onc:-e and th-eri moveyqur object ti;,, whichever face Iti:lu wan s-ck, to.

- Ct:impofleflt: HUilt'.!r v,our mou o...e a corhtlr unt11 a coloured dot or :square appe,ns. ic otlce afld th-en mo11e your objec:t to whii;:he-ver f.ac:e you Willntto stick it 0 .

SELECT ON

DoobJe dick, Tripl dick and drag to select

select more than one obj c.t.
"/,-i
Dcubll!! dick on a"fa1ce ,md it will Si!!le>ct he: Ill) imam face induding the e:dge/lir11?

Triple. click 017.3 face a r:id it will select the entire sharp€.

If you click, md drng fight o left itwirl h[gtili!!lht anvrace-s a11d li11e.s it go-@s ai;:ms-s,

Cick and drag Right to Lefl

If you cl"c.k.sind drag le to right it wil! anly hp_gl,Ught full

IInes, facl'!.s. and il rn

GROUPS \& COMPONENTS

To make part":!. aFyour model ea ier kl ma,..e .;.round you ihOI)Id< always rn.i e tr:tiem Into a oomPQner,t. You cilill (lo this.lo 1. ways.

1 HIghhght all the faces Jitld s..Id s of your shape and then rish.t c:lick and el i;t M.ike Ctirn g11eJTt. In the window that pops up, name ;'OIJr component arid rl1!"k OK.

Higl'illg h:t all thil fa,oo:;, and Sides of yaur s. p,e and th-en pres..s G on ';'Dur .e1,tl:J.oar1i.
In e wirn::dow that pop upgi.,. your camp@ent a llame andi c ic OI:

RBrrtetilber, 1F yo c■p\lam::i pas e an objec yaul•e alri:.:aify madE into amm pa.nent and ry to-eha-ng12 one, all your otller components will ch,mge tool

I you hav12 lots of c:ompo e-nts you want to move t0ieether you need o pu ttiem into a g,.ro p.
1-fw,light ;"di the face5 ,mdir de:. of vour !,f ape arr t en r f1 Cilek ani:l e-l ct Ma'k@G.roui:,.

VIEWS

How to look at your model from different angles.

Tod aw a
Ilfle or clrc

1. ick your mou ontoe
:l, "MUoJe- ','O f OU alol)g 50 that ','D r lifle U.irns-o ue, red or greer1 (IDD

3. li'lartduitf1cmr Kelj'boam!

4. ines-: Wlhcy11t c:lic:king <1ijain, tyi;>e

5. $\mathrm{CiH}: l \mathrm{le}$: WtLhuul dicking a ain, 1wc- Mlf the-w oth o. $V Q$ rorcle n. !e.g pe- IDO ,t '(OU W3llta 200 mm -.,-cte .ircle Tti.en rire:.:; nter/Re \jjrr
a yburio:e-vw.ard
lo draw a
rectangle
e:.:actlv the ngh sii.c
6. Clii.k yo "'rnolllie on,;e
7. Move vour mous.e Blong so that $\mathrm{rFr}===1=1$, your line turns blue,,rei:d of gree, 11

3. Hands off your keyboard!

Q. Wit m, 1 it ;ili; ;ing; ;i@jn, ty_p,e one of v, our f.arig :1. Ir-! $1:-200\}$, typl2 a c:.omma and then type your condl lengtti in. Hit En er/Re um on yourlc;eybw-r-d

You can get to your Sketchup views in 2 ways.
 first, cl cf.: anw on the> m.ign Fyll!!! gla \{III the le bar of tools_Th1-sS!its .3t the top on its own. WP'f! Parallel P J! 1 C '. I 1 an in :.nclclick Ent /Fmturn. Thi:in clickth na.gr ifyi, aglas\$i:'Ililillin a11d t'l'P in w Ichl!vll!r of thi! followitiEI:/ .," ','LIJM:ci.1,

Vou can also go o Scenes which is the 7th icon do•Nn on the tool bar on the rlgtii:1look Illie fitm clapper boar'dl and dick th.e icons..I:ielow. ${ }^{\text {'" Mc.llo:e .sure thiscon } i 5}$ selected too

Task 4 - Upcycling!

What is it? Why is this one of the hottest trends in modern design? Using nothing but old packaging or unused products from your home, and make a high-quality model of a Product.

This could be anything, a trinket box to a lamp, a car to a decorative ornament. Carry out some research first to gain some inspirations, have a look around your house, shed, garage to see what is unused and unwanted (check with parents first.!) See the inspiration below.

Good Luck and Get Upcycling!

Task 5 - Isometric Sketching

Produce a high quality, hand drawn ISOMETRIC sketch of your upcycled product. Don't worry, this is something we work on at A Level, but let's see your skills!

There are plenty of options of isometric grid paper online, feel free to download one and use it, if it helps at this stage!

Below is a help sheet for the more difficult shapes. These use a method called 'crating', where a cuboid is drawn, and the more difficult shape is then drawn inside this, making the process easier. Have a go at this.
 Isometric Circles (elipses) + CONES + RUUNDED CORINERS

Vertial
Vertial
Hollow'
 cylind
(tube)

Steps to

draw an
elipse
An is omefuce
An is omaticic
circle.

Mathematics in A Level Design and Technology

Have a look at the following Maths criteria we will be covering. Do you feel comfortable with these topics? Add ticks to the topics you are confident with and crosses to the ones you may struggle with.

Introduction

Mathematical skills are an essential part of AS and A Level Design and Technology. In order to be able to develop their skills, knowledge and understanding in design and technology, students need to have been taught, and to have acquired competence in, the appropriate areas of mathematics relevant to design and technology, as indicated in the tables that follow.
The assessment of mathematical skills will include at least 15% level 2 or above for design and technology, in the context of the examinations.
The following tables illustrate where these mathematical skills may be developed and could be assessed.

Reference	Mathematical skills requirement	Potential applications
a	Confident use of number, percentages and percentiles	- Calculation of quantities of materials, costs and sizes
b	Use of ratios	- Scaling drawings
c	Calculation of surface areas and/or volumes	- Determining quantities of materials
d	Use of trigonometry	- Calculation of sides and angles as part of product design
e	Construction, use and/or analysis of graphs and charts	- Representation of data used to inform decisions and evaluation of outcomes - Presentation of market data, user preferences, outcomes and market research
f	Use of coordinates and geometry	- Use of datum points and geometry when setting out design drawings
g	Use of statistics and probability as a measure of likelihood	- Interpretation of statistical analyses to determine user needs and preferences - Use of data related to human scale and proportion to determine product scale and dimensions

On the next page, you will find each Maths topic broken
down with an explanation of how to attempt calculations for each one.

Maths skillls for AS and A Level Design and Technology

Confident use of nun1ber, percentages and percentiles

INu1nber

To convert fa-om one metric unit to armther, it is nece-Ssary to know the followingi:

$!$ Length	Weight	Volume
$10 \mathrm{~mm}-1 \mathrm{~cm}$	$1000 \mathrm{mg}=\mathrm{lg}$	$100 \mathrm{~d}=1$ litre
$100 \mathrm{~cm}=1 \mathrm{~m}$	$1000 \mathrm{~g}=1 \mathrm{~kg} 1$	$1000 \mathrm{~mJ}:=1 \mathrm{li}$ re
IOOIJ mm =1.m		$1000 \mathrm{om}^{3}=1$ litre
IOOIJ m = mm		$1000 \mathrm{I}=\mathrm{m} 3$

You only n 1 eed bo be able to mul oiply or divide b ;y $10^{1} 100$ or 1000 in 1 ordei- to be able to convert betv een mebic units.

- When conve1tinglfrom a sm aller n1JJmber to allalrger Irn1m belr you mu.,t remember to diviide,.
- When conve inglfrom a bigger 111111!m1 b elr to, a s1maller 1111111111111b,er you must remlember to m111|EtCjplly-,
Wh1en canying out some cornplex ealoulations, you may giet an answei- on you - caloulator with lots of numbers, such as 125.3867
If tih1e answer was being used to measure 10ut a l1e1ni;rtih, i. wo uld not be possible: to mark out the length to that level of aoouracy.
Certainly when measu1ing componen wi ha micromet,er m• Vernier callipers, it is po:s:sible t,o meas.une to 2 decimal plaaes, e.g,. 26.67 mm .
We tiherefm-e riou111,d numbem to a given number 1of decimal places,

। $.48=12.5$ correot to 11 decimal plaoe	Round up, because 12.48 is doser to $12 . .5$ than I .4
$(1.0648=0.06$ correct to 2 decimal places	Round down because IJ.. 0648 is closer to 0.06 than to 0.07
$6 . .475=6.248$ con-ect to 3 decimal places	If the ru1gure 1 n the fourth dedmal place is 5 or more the11 tound up

I:a11dlar, form is used to nejpresent vieiy $\operatorname{larg} 1 \mathrm{e}$ (m-very :s.mall) 11 umhers.
A numblei-in :standan:ll fmm looks like this,.

This pa1t is w1itten as a

number b1etween 1. a1111d 10

| $1 \mathrm{nnm}=1 \times 101-{ }^{3} \mathrm{~mm} \cdot \quad$ uu:mo nn |
| :--- | :--- |
| $\mathrm{In}, 2:=1 \times 10^{6} \mathrm{~mm}^{2}$ |
| $\mathbf{I n}, 2:=1 \times 10^{4} \mathrm{~cm}$ |

Et is import:ant to be able to nnanipulate equations..
To solve dem;i. y-relaibed rques ions, we can use the follov ing equation:

$$
\text { 'em1 sillty }=\frac{1 \text { rnass }}{\text { vol } 11111 \mathrm{ne}}
$$

Wh1en ma:s.s is mea uned in kilogi--anns and the volume i:s, in cubic metres or m^{3}, the density is mea:s-l.med in kg 1 per m^{3} or $\mathrm{kg} / \mathrm{nn}^{3}$. Densi y can also be measured in $1 \mathrm{~g} / \mathrm{cnn}: 3$

Worked exan1ple:

A 11ing has:a m,ags of 15 g .
Gold has a density of $19.3 \mathrm{~g} / \mathrm{om}^{3}$.

Calol.Illate the volume of goldi required to make the ring.

U"'ing denisity = ma1ss
volume
this formula ca11 be rea111rangedl to , give voll!llme = mass
denisity

$$
\underline{15}=0 . .777 \quad \mathrm{~g} / \mathrm{om}^{3}
$$

19.3
|Perc:e1r11tagres and pen:enti Ies
eroeITT1t:ag,e ehangie is, pe1hapg, one of IJhie m iw;t: ronnmo:n ealculations,.
lihe peraentage change oouldi be an increase, where the answe, wouldi be posiil:i'llle, or a decrease, whene the answei-v ould be negatiwe.
To ealculaibe percentage ehang $1 e_{1}$ the following 1 equation ean be used:
$\frac{\text { final data set -initial da:ta set }) \times]}{\text { inihal data \&et }} 00$
So_{I} i.f the initial dlata set is 22 and the fiinal data :set is 40 then the percentage dhange is:

$$
\left.\frac{4_{\mathrm{O}-}}{22}\right) \frac{22}{} \mathrm{IX} \mathrm{HICl}=\binom{1}{-22}
$$

Worked example:

A mallliufacturi111g aompa ny has:moved to a 111,ew factol1y.
Th,e o!ld factory was: $8000 \mathrm{~m}^{2}$ and the new faotof)I' is $11500 \mathrm{~m}^{2}$,

Callol.llate the percentage inorea.s,e in floor space.

```
U51JO-8000 x 100 = 43.75% (or 44%)
    801)0
```


Worked example:

Th,e mass of a casting is redluced by 8% dlue to ma ehining,
Th,e o:ni,ginal cas:lling weighs $3, .65 \mathrm{~kg}$.

Callol.llate he final weight of he casti111,g once it has be,en m, a, chinedl.

Method 1

$$
\begin{aligned}
8 \% \text { Of } 3.65= & \underline{8} \times 3.65 \\
& 100 \\
& =0.2 .92 \mathrm{~g}[\text { he } 8 \% 1 \text { red1..1 otion is } 0.2 .9 \mathrm{~g}]
\end{aligned}
$$

$3.65-0, .292=3.358 \mathrm{~kg}$ [s:ubtract it to work out the final weii,ght]

Method 2

$100 \%-8 \%=92 \%$ [the final vallue is $92 . \%$ of the miginal weight]

$$
92 . \%=\underline{92}=0.92[0, .92 \text { is tha,e multiplier] }
$$

$$
100
$$

0.92. x $3, .65=3.358 \mathrm{~kg}$ [multiply the o,riginal weight by $0, .92$]

Com pound peroentag,e inoreases are oft: en us:edl by cornpanies to p,roj,ect: uture oosts such as sitaff salaries m•maoe iials aos.ts,

If materials cos: a -e es:timatedl to rise at 3% a year for the IfTi,ext three years, oomp,an ean ealculate their material.. oosts using compound interest ealculations.

Year	Amount at the start of the year	A1nount plus interest	Total amount at the,end of the y-ear
1	$£ r n o,, 000$,	um,000 \times L03	$£ 103,000$
2	$£ 1.03,000$	$1113,000 \times$ L03 - $100,000 \times 1, .03^{2}$	$£ 106,090$
3	$£ 1.05,0901$	$106,090 \times 1, . i) 3,-100,000 \times 1,03^{3}$	$£ 109,272, .70$

Use of rc1t-os

atllos are u:gedl to oom pa re rqu an iies. Tihe s m pies ifmTil olf a ra- io has a wholle 11 umber with no commo:nifactor" "r e.g. 1:3
atiios are often 1 gi'lllen in the form 1 :n where n is a number.
lihi:s.fo T11 olf ratio ${ }_{I}$ the um1itary ratio, i:s.most ofiben used for .§leale 1 drawing:s.olf thing like buildings or for maps,
To w, ite a ratio in the orm of $1 .: n$ divid 1 e eaeh number in the ratio by the firnt: 11 umber in that:1-.3-1:Jio.
fm - example,. 5:16 $=\quad \underline{46}$
55
$=\quad 1 .: 3$.

Cc1lcullation of surfc1ce are;as and/or volun1es

Many v ooden I:Joys suclri as. train"' and building blocks. are made up a. combinatiorm olf re,gular .solid geome ric shape..s"'.ueh as cuboid.s., cylindler:s and p1isms.

So that manufaoturens can work out how mudh timber to buy andl, indeedl,. consid, er the mo:gt eronomical form of timber to buy,. it is important that they are able to ra lculat:e violum es,. lihe cal ulation olf su tfare area is also imp mta nt so that manufac uner-s can ealcula e the volume o su1face mishes, for lexample.
lit: is also important for oomp,an ies l:Jo be able to consider violumes when packaging items. lif a manu c11cl:Juring company is "'.hipping lap op:"'., they need to be able to convert:between units af 'i.i'iolumes wh1en th 1 ey package smaller bol<Jes into lang, e1• boxes m IJransportalJion. Sometimes even shipp ing| rontainer v1olumes have to be con"'ideredl ito ensure ma:ximum use is made af he available volume when moving 1 g 1 oods lfirom one country to another.
linsert: a dliag1c1m olf volume and surfooe a -ea formula for: oube I cylindler $_{i}$ h 1 emis.phe11e a111d "'phere. ake sure o oove1•cir-cum lference andi area of a circle.

Use of trigonon1etry

Trig1onometry i:s.used extensively in the world of iteclrinolog 1 y and engineeiin 1 g ,. It: is. used to caloulate he paths a111d movements af robot:s and automated guided veh ides (A!GVs) within footorieg. Pythagimas" theorem is. also used to calculate he lengrl:Jhof "".id:e..s. of a rightangled triangle, $01 \cdot \mathrm{fo} 1 \cdot$ checking that a righ -angled triangle has been marked ou corneotl" l with a 90° angle.
lihe longest sidle of a right-angled triangle is. k111orv $n a, g$ the lhyp,o;lltenl! J1se (hyp) and is always opposite the right: angle. The nemaining two sides are known as the op,posite (opp) al11d adjacent \{adj)i as shown in Figure

opp

a.dj

FigIIIIr.e 1

Triglonome ry can al:so be u:sed to calculate the anrgles, of joints when manufacturiing pm d um. Fn •ilire:s, e cases, we ne, ed to be able to app ly and use •ilire s n,e and, c:osi lii e of a11g1lres.
En fiig11nd 2.rwe c-an u:s,e thesinre and cosille of the angle to ealculaibe the ull known lengths af ilire triangle.

The length of the opposite can be calculated by $4 \times \sin \& o^{0}$ or $4-"$ "in $60,{ }^{0}$
The length of the ardjaoe nt c-an be c-al ulated by $4 \times \cos .6\left(f^{1}\right.$ or $4 \cos 60^{\circ}$
En ilire revent that thre lreng 1 h of the hypotenuse is $\mathrm{u} 11 \mathrm{k} 110 \mathrm{n}_{1}$ the opposite and adj oen ea11 be ealeulated using the follrowing foimulae::

$$
\begin{array}{rlrl}
\sin 60^{8}= & \text { QRQ. } & \text { and } 00^{\prime \prime} \cdot 6^{\prime} 0^{\circ}= \\
& \text { hyp } & \underline{\text { adllii }} \\
\text { hyp }
\end{array}
$$

Howeve, \cdot.rthese nule are only true for rig 1 ht-angledbianrgle • Whren the opposite side a11di the adjaoent side a -e involved:

$$
\begin{aligned}
\operatorname{Tan} \& 0^{\circ}:= & \mathrm{Q}!\mathrm{Q}!1! \\
& \text { ardj }
\end{aligned}
$$

The acrronym.0• H CAHTOA might help you to re mre mber these fornnulae:

> Sin Opp Hyp Cos Adj "IP Tan Opp Adj

Constrl ction, use and/or anal ysis of graphs and charts

Graph""alldi charts a re a verv popular alldi effic,irent nnethod of reiPresenting a g -ea• deal of infrolmation and data,. Various cha :s anrd graphs a re used ${ }_{I}$ suoh as bar oharts pie cha, "' a11 di hi:stog11c1nns..

User's needs prefenenoe:s.and views are often canvassed as part:of the research p1-ooess with the resuI beillg1represented in a $\mathrm{g} \square$ phireal. 0 rm .

Bar charts

Bar oharts: are IJlss:ed to 1-epresen1t gmup!!ed data, 1J1ss:mg rectangula - bars with va.-ying lengths, p1-opottD1 tht t Q the 'Ilalues: ! Jhat t:Whey represent. B.arn can hie plotted v,e tieally or horizontally, in $20 \mathrm{~m} \cdot 3 \mathrm{D}$. Wit'll a v,atically plotted bar chart,. the vert:Dcal axis wi11be used - rO repr-e e111lt a numerical value a111d the Irn,ars IJlcSed to ide111tify a .specific categoiry.

Fiig1111re 3 shows a ba, chatt indi, cating the height of a num Imelf of trees at were planted on the samn, e day in a manag:ed forest. Thi,g:type of graph might mie us,ed to analyse: growl:Jln ra'tr.es: or bJ ide1111tify the: 111 umber- of trees b, efow a ae ain heig hit that $111 i \mathrm{i}$ i ght need to be:felled, tine:reby allowing the remainin, g b-ees, greater aoaess to light an,d wat,e - and nu'li:rients i11.11:J'llle soil..

Figur.e 3

Pie cbairt.s
ie:c'lllarts are: ano!Jhelf pop!!ular me:!Jhod to re:presen1t data. They ca11easily hile ge11elfated in programns such as Microsoft:® ,excel.

Thew ole oim1e represents the total n1J1mnber of items $\mathrm{m} \cdot$ resp!lonses. Tine. siize of a sect, olf will be a pilf,opllition of the t,otal frequency.. Th,e angles at the (entre of the pie ohart must add up to 3600 .

The an le fo - eadinsectm- can b,e fou nol using the foll,owing formnIJIla:

$$
\text { seotrnr alll gle }=\frac{\text { frequ.ency } \times 3600}{\text { to'li:al frequency }}
$$

T,able 1 shows the nunr1hilelfo,fow111ers of mnobil,e pho111e:s,and Fiigure. 4 slhow:s the same data ittl !.Jh,e fom, of a pi,e oha,t,.

IPI110111e	iPhone 6	iPhcrme:7	Samsung1S.8	Samsm1g1 Galaxy eolg:e: 13	Nokria X1
INt1111ber	38	26	15	8	

Tab e I
Mobile, none owne, s

, IPhone 6 • iF"l'IMe 7 • samsuns SS . sams G:c1laxv Ed . Nokia XI

Figure 4

$$
\text { Total fr,eq1J1e111cy }=38+215+15+13+8=100
$$

$$
\mathrm{iPh}, \text { one } 6=\frac{38}{1.00} \times: 3150, \mathrm{o}=136,8^{\circ}
$$

Once all of •1:Jli1e fr,eque11cies haveeen Gak1J1lat, ed yousncmld cheok that all ilie anrgles: add up t:o 3600.

Hilstogran s

A nist,og!fam ios used to represel111t aoll'litiuous data sisidn as anrt'hmpionnebic data, e, g. ilrhe heights off studenits illl yourr aliz'88. Cmrnti nuous dailrannea ns the re are no glaps between thre bars.

Fig11.1re :5

se of coord-Hiltes and geon1etry

A dab.Jm ref'e relllioe poirnt icSIJcSed when marking Olllit rdu ring man IJIJfactu rill g 1 proce.sses. It is a singlemi1111t from whioh all mneasmnernrooil:s anc: 1rakJern or f]Dints marked out,. easuremenll:s woul,d be rgivernin mnnn, onn or mn dlependinrg 011 . 1 : Jlne saal, e anid si2!e of the o :eat beinrg marlred out.
On some occasiionsir it is neces.sary to mark rout greomebll"ic sh.apiles SIJeh as squ.ar,es and tttianrgles. TIner,e are three rdiiffonent tyjp,es of triangle5ir but ilrhey can all be constrnctred wit:h a oom passr given the side lengths. Thre O(!iffipi!.ass i,s:.set::t,(!i thre Irenrg't:h requirred anid thie11Uldeded to draw amarc. The sides of"lilne biangle can e drawrnwem the arcs inter:s,eci:.

FigllIIN! 6
m fig1111re 6, 1:Jhe triangle is an i:s'O!sceles 1:Jll"iarngle:: 1:Jnis means !Jhat all Ithree:sidle_s:arre e!Jlual in lerngil:Jln. t also means that the thr,,e,e irnternal anrgles are equal at 600, there:being a total of 1.aOOi111 a $n v$ bianrgle.

A s.quare:rof t:he knowrnside length can also be oo:nstructed 1J1,Sing a compass, since: it is po.s.siblre t,o cr,eat,e a go,oright-angl,e by biseoting a sbaigh line (w1nioh is essentially an rno;(angle:).. This is shown i111figi1111re 1 .

FigIIIIN! 7

Use of statistics and probability as a measure of likelihood

As part of any commercial manufacturing process, some form of quality control check will take place. Depending on the scale of production and what is being manufactured, there will be a set number of samples that are extracted for some form of checking, such as dimensional accuracy for example.
The sample for testing may well be taken at random if the product is, for example, a plastic injection-moulded pencil sharpener, where one in every thousand components might be tested. If it is an airplane, every part will be subjected to some form of testing.
Probability is the measure that an event will occur, such as a product not being made to a specific size or weight. The higher the probability, the more likely it is that the event will occur.

Send your completed tasks to Miss Corry acorry@phs.cheshire.sch.uk

I can't wait to see them!

See you in September

