solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate		use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money, etc.)	
use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of meas ure to a larger unit, and vice versa, using decimal notation to up to three decimal places		change freely between related standard units (e.g. time, length, area, volume/capacity, mass) in numerical contexts	
convert between miles and kilometres		measure line segments and angles in geometric figures	
recognise that shapes with the same areas can have different perimeters and vice versa	calculate the area of parallelograms and triangles	calculate perimeters of 2D shapes	know and apply formulae to calculate area of triangles, parallelograms, trapezia
recognise when it is possible to use formulae for area and volume of shapes	calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units	know and apply formulae to calculate volume of cuboids	calculate surface area of cuboids
describe positions on the full coordinate grid (all four quadrants)		solve geometrical problems on coordinate axes	
		identify, describe and construct congruent shapes, including on coordinate axes, by considering rotation, reflection and translation	
draw and translate simple shapes on the coordinate plane, and reflect them in the axes		describe translations as	2 D vectors

change freely between compound units (e.g. speed, rates of pay, prices) in numerical contexts
use compound units such as speed, rates of pay, unit pricing)
measure line segments and angles in geometric fig- ures, including interpreting maps and scale drawings and use of bearings

know the formulae: circumference of a circle $=$ $2 \pi r=\pi d$,	calculate perimeters of 2D shapes, including circles
know the formulae: area of a circle $=\pi r^{2}$	calculate areas of circles and composite shapes
know and apply formulae to calculate volume of right prisms (including cylinders)	

identify, describe and construct similar shapes, including on coordinate axes, by considering enlargement

Stage 9/FH
change freely between compound units (e.g. density, pressure) in numerical and algebraic contexts
use compound units such as density and pressure

calculate arc lengths, angles and areas of sectors of circles	calculate surface area of right prisms (including cylinders)	calculate surface area and volume of spheres, pyramids, cones	
			know the trigonometric ratios, sin $=$ oppositie/hypoteruse, cose a adjacent/hypotenuse, tan $=$ opposite/adiacent
the relationships between lengths in similar figures	c^{2}, and apply it to find lengths in right-angled triangles in two dimensional figures	apply it to find angles and lengths in right-angled triangles in two dimensional figures	

